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This paper is concerned with the nonlinear interaction between a planar and a pair
of oblique Tollmien–Schlichting (T-S) waves which are phase-locked in that they
travel with (nearly) the same phase speed. The evolution of such a disturbance
is described using a high-Reynolds-number asymptotic approach in the so-called
‘upper–branch’ scaling regime. It follows that there exists a well-defined common
critical layer (i.e. a thin region surrounding the level at which the basic flow velocity
equals the phase speed of the waves to leading order) and the dominant interactions
take place there. The disturbance is shown to evolve through several distinctive stages.
In the first of these, the critical layer is in equilibrium and viscosity dominated. If
a small mismatching exists in the phase speeds, the interaction between the planar
and oblique waves leads directly to super-exponential growth/decay of the oblique
modes. However, if the modes are perfectly phase-locked, the interaction in the
first instance affects only the phase of the amplitude function of the oblique modes
(so causing rapid wavelength shortening), while the modulus of the amplitude still
evolves exponentially until the wavelength shortening produces a back reaction on
the modulus (which then induces a super-exponential growth). Whether or not there
is a small mismatch or a perfect match in the phase speeds, once the growth rate of
the oblique modes becomes sufficiently large, the disturbance enters a second stage,
in which the critical layer becomes both non-equilibrium and viscous in nature. The
oblique modes continue to experience super-exponential growth, albeit of a different
form from that in the previous stages, until the self-interaction between them, as
well as their back effect on the planar mode, becomes important. At that point, the
disturbance enters a third, fully interactive stage, during which the development of the
disturbance is governed by the amplitude equations with the same nonlinear terms as
previously derived for the phase-locked interaction of Rayleigh instability waves. The
solution develops a singularity, leading to the final stage where the flow is governed
by fully nonlinear three-dimensional inviscid triple-deck equations. The present work
indicates that seeding a planar T-S wave can enhance the amplification of all oblique
modes which share approximately its phase speed.

1. Introduction
Laminar–turbulent transition in an incompressible flat-plate boundary layer is

often initiated by amplification of small-amplitude disturbances, known as Tollmien–
Schlichting (T-S) waves. During the early stages of such transition, the disturbances are
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usually predominantly two-dimensional, and their initial development is described well
by linear stability theory. However, sufficiently further downstream, three-dimensional
disturbances are observed to amplify more rapidly and become dominant. This
is in contrast to linear theory, which predicts that the fastest growing mode is
two-dimensional. Observationally, a similar preferential growth three-dimensional
disturbances occurs in the transition process in mixing layers and wakes, where
transition is caused by inviscid Rayleigh instability waves. Since turbulence is
characteristically three-dimensional, the preferential growth of three-dimensional
disturbances is a crucial step in the transition process. Because of this, identifying the
mechanisms which promote fast growth of such disturbances has been one of the key
issues in transition study (Kachanov 1994).

One of a number of mechanisms that have been proposed is subharmonic resonance.
The possible existence of such a resonant triad of modes, consisting of a planar and
a pair of oblique modes, in the Blasius boundary layer was first suggested by Raetz
(1959). Craik (1971) then derived evolution equations for the interacting instability
modes by using weakly nonlinear theory in a heuristic fashion. His theoretical
work prompted the landmark experiments by Kachanov & Levchenko (1984) that
established the importance of subharmonic resonance in boundary-layer transition.
Self-consistent asymptotic mathematical descriptions of resonant-triad interactions
were constructed in a series of papers by Goldstein & Lee (1992), Goldstein (1994,
1995a), Mankbadi, Wu & Lee (1993) and Lee (1997), Wu (1993, 1995), Wundrow,
Hultgren & Goldstein (1994), for boundary layers with zero, adverse or favourable
pressure gradients. An important finding is that through a parametric resonance, the
planar wave causes the subharmonic oblique waves to amplify super-exponentially
(Goldstein & Lee 1992; Mankbadi et al. 1993). This key prediction has been confirmed
experimentally for a decelerating boundary layer (Borodulin, Kachanov & Koptsev
2002a; Borodulin et al. 2002b).

An alternative explanation for the preferential growth of three-dimensional
disturbances is secondary instability (e.g. Herbert 1988). In this approach, the original
steady basic flow plus the dominant two-dimensional planar mode is taken to be the
base flow, and the instability of this new base flow to three-dimensional disturbances
is studied. Hence, in contrast to the asymptotic theories where the planar wave is
allowed to evolve, in this approach the amplitude of the evolving planar wave is
treated, in a somewhat ad hoc manner, as a quasi-steady parameter. It is found that
when the amplitude just exceeds a (moderate) threshold, a three-dimensional wave
with the subharmonic frequency of the planar mode becomes the most unstable mode
(i.e. more unstable than the planar wave). However, if the amplitude of the planar
mode is increased further, the most unstable (three-dimensional) disturbance reverts
to having the fundamental frequency.

In both the above explanations, the dominant planar mode at first primarily
enhances the growth of a narrow band of disturbances with frequencies centred at
the subharmonic frequency. In experiments, however, occurrence of rapid growth
is not restricted to such a narrow band. For instance, in the late stage of plane-
wake transition, three-dimensional disturbances with a broadband of frequencies
amplify to overtake the originally dominant planar mode (Corke, Krull & Ghassemi
1992; Williamson & Prasad 1993a, b). Prompted by this observation, Wu & Stewart
(1996) proposed a new general mechanism, which they referred to as a phase-locked
interaction. They showed that an effective nonlinear interaction could take place
between planar and oblique Rayleigh instability waves which have the same phase
speed (and hence are phase-locked). The interaction within their common critical
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layer generates a strong difference mode, which in turn interacts with the oblique
mode to influence the development of the latter. While this mechanism is somewhat
weaker than a resonant triad interaction, it operates under a much less restrictive
condition (in that the subharmonic relation between the frequencies is not required).
Yet this mechanism can significantly enhance the growth of the oblique wave and may
eventually cause it to grow super-exponentially. In summary, the crucial difference
from subharmonic resonance is that the phase-locked mechanism predicts that a
dominant planar mode is able to preferentially excite all oblique modes sharing its
phase speed.

In the present paper, we study the role of phase-locked interactions of T-S waves.
Our investigation is motivated by the experimental observation that in boundary-
layer transition, three-dimensional disturbances in a wide frequency range grow to
a significant level, despite not satisfing the resonant-triad conditions (e.g. Corke &
Mangano 1989). Numerical simulations have also revealed such a phenomenon (e.g.
Spalart & Yang 1987).

As in many of the related previous theoretical studies of boundary-layer transition
(Mankbadi et al. 1993; Wu 1993; Wu, Leib & Goldstein 1997), we shall focus on
the upper-branch scaling regime, since (a) in most experiments on boundary-layer
transition, nonlinear effects do not become noticeable until the upper branch of the
neutral curve is approached (e.g. Klebanoff, Tidstrom & Sargent 1962; Kachanov &
Levchenko 1984; Corke & Mangano 1989), and (b) the upper-branch regime covers
almost the entire linearly unstable region, including the overlapping domain between
the upper and lower branch regions, as pointed out by Goldstein & Durbin (1986).
The choice of the upper-branch regime is crucial for the present investigation, because
the notion of a phase-locked interaction is based on nonlinear interactions within a
critical layer, and the critical layer is distinct only in this regime.

We note that the upper-branch asymptotic approximation for the linear growth
rate is not accurate at moderately high Reynolds numbers (see e.g. Reid 1965; Healey
1994). However, we do not believe that this shortcoming constitutes a reason for
developing nonlinear theory based on the upper-branch scaling. This is because the
nonlinear growth rate of a disturbance depends principally on its modal shape,
and the latter is predicted reasonably well by high-Reynolds-number asymptotic
theory. Further, given that the nonlinear growth quickly overtakes the linear one,
the qualitative behaviour of the disturbance should not be significantly affected by
the relative inaccuracy of the linear growth rate. Thus, although the finite-Reynolds-
number approach based on the Orr–Sommerfeld equation gives a good approximation
to linear growth rate, we believe that the high-Reynolds-number formulation offers
the best opportunity to construct a self-consistent theory that can at least qualitatively
describe the major nonlinear effects.

The rest of the paper is organized as follows. In § 2, the problem is formulated.
We assume that planar and oblique T-S modes are present, propagating at the same
phase speed to leading order, but allowing for a small degree of mismatching. As
the modes propagate downstream they interact within their common critical layer,
until at some point there is a nonlinear feedback; we consider this stage in § 3.
Specifically the mutual interaction is shown to induce super-exponential growth or
decay of the oblique modes if the phase-speed difference is non-zero. A special case
arises if the phase speeds are exactly the same, since the interaction in the first
instance only alters the wavelength of the oblique modes, leaving their modulus to
evolve exponentially (rather than super-exponentially). However, further downstream
the wavelength alteration becomes rapid enough to produce a back reaction on the
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modulus causing, even in this special case, the latter to grow super-exponentially. In
either case, once the oblique modes have acquired a sufficiently large growth rate,
the disturbance enters a second stage, which is distinguished in that non-equilibrium
effects become as important as viscous effects in the critical layer. The oblique modes
then evolve over a faster scale than the planar wave. In particular, provided their
initial magnitude is sufficiently small that their effect on the planar mode is negligible,
the amplitude function of the oblique modes then takes a WKBJ form. This regime,
which we shall refer to as the WKBJ stage, is considered in § 4. The continued rapid
growth of the oblique modes eventually leads to a third, fully-coupled stage, when
the self-interaction between the oblique modes, as well as their back effect on the
planar wave, comes into play. This third stage is studied in § 5. By observing the
similarity between the present problem and the related problem of Rayleigh waves
(Wu & Stewart 1996), it is deduced that the amplitude equations in this stage are
the same as those for the Rayleigh problem, but without the linear growth terms.
The appropriate initial conditions are derived by matching with the WKBJ stage.
The amplitude equations are solved numerically, and the solution is found to develop
a finite-distance singularity, leading to a strongly nonlinear stage, governed by the
unsteady inviscid triple-deck equations. This final stage is highlighted in § 6. Further,
we show in the Appendix that all the weakly nonlinear stages through which the
disturbance evolve are governed by appropriate limiting forms of the amplitude
equations derived by Wu & Stewart (1996) for the nonlinear non-equilibrium viscous
critical-layer regime. In § 7 we discuss the implication of this, and draw some general
conclusions from the results of our analysis.

2. Formulation and linear solutions
The basic flow is taken to be the incompressible Blasius boundary layer on a

semi-infinite flat plate. It is described in terms of Cartesian coordinates (x, y, z) with
its origin at a point on the plate a (dimensional) distance L downstream from the
leading edge, where x and y are along and normal to the plate, respectively, and z is
the spanwise direction. The velocity components in these directions are denoted by
u, v and w, respectively. The length, time, velocity and the pressure p are normalized
by δ∗, δ∗/U∞, U∞ and ρU 2

∞, respectively, where U∞ is the free-stream velocity, ρ is the
fluid density, ν is the kinematic viscosity, and δ∗ = (νL/U∞)1/2 is the boundary-layer
thickness at x = 0. The local Reynolds number R =U∞δ∗/ν is assumed to be large,
i.e. R � O(1). Near the wall, the basic-flow profile, UB , has the behaviour

UB ∼ λy + λ4y
4 + · · · , as y → 0, (2.1)

where λ4 = − λ2/48. Strictly speaking, λ depends on the slow streamwise variable x/R,
but to the order of approximation in the present paper it can be treated as constant
with λ≈ 0.332.

We shall consider the interaction between a planar T-S wave with a dimensional
frequency Ω̃ , and a pair of oblique T-S waves with a common dimensional frequency
Ω . The upper-branch regime for the Blasius boundary layer corresponds to the scaling
(Reid 1965; Bodonyi & Smith 1981)

Ω̃ν/U 2
∞, Ων/U 2

∞ ∼ R−6/5. (2.2)

It is convenient to introduce a small parameter

σ = R−1/10,
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and to define scaled frequencies

ω̃ = σ −12
(
Ω̃ν/U 2

∞
)
, ω = σ −12

(
Ων/U 2

∞
)
.

Linear stability theory (e.g. Bodonyi & Smith 1981) suggests the introduction of
scaled coordinates

X̃ = σ α̃x − σ 2ω̃t, X = σαx − σ 2ωt, Z = σβz, x1 = σ 4c−1x, (2.3)

where X̃, X and Z are the ‘fast’ variables describing the oscillation and the
spanwise variation of the T-S waves, respectively, while x1 is an appropriate ‘slow’
variable describing their growth. The parameter α̃ denotes the scaled streamwise
wavenumber of the planar mode, while α and β are the scaled streamwise and
spanwise wavenumbers of the oblique modes, respectively. It follows from (2.3) that
the multiple-scale substitutions hold

∂

∂t
→ −σ 2ω

∂

∂X
− σ 2ω̃

∂

∂X̃
,

∂

∂x
→ σα

∂

∂X
+ σ α̃

∂

∂X̃
+ σ 4c−1 ∂

∂x1

,
∂

∂z
→ σβ

∂

∂Z
.

(2.4)

We assume that the phase speeds of the planar and oblique modes, c̃ ≡ ω̃/α̃ and
c = ω/α, are equal to the leading order, but are allowed to have an O(σ 2) difference,
i.e.

c̃ = c + σ 2∆, (2.5)

where ∆ = O(1) is a parameter characterizing the phase-speed mismatch. The effect
of phase-speed mismatch was considered by Wu (1996) in his work on the resonant
triad and phase-locked interactions of sinuous and varicose modes in a plane wake,
and in a closer context by Jennings (1997), who studied the phase-locked interaction
of T-S waves in the high-frequency limit of the lower-branch regime. In Wu (1996),
the phase-speed mismatch was treated as a special case of amplitude modulation.

The wavenumber α and the phase speed c expand in the form

α = α0 + σα1 + σ 2α2 + σ 3 ln σα3L, (2.6)

c =
ω

α
= c0 + σc1 + · · · , with c0 =

ω

α0

, etc., (2.7)

and a similar expansion holds for α̃. However, we shall only need to retain the leading–
order terms in the expansions as higher-order ones do not affect the nonlinear
interactions considered in this paper. In terms of the above scaled variables, the
disturbance in the main part of the boundary layer, to leading order, takes the form

u = εB(x1)φ
′(y) eiX̃ +δA(x1)ū1(y) eiX cos Z + c.c. + · · · ,

v = −εσ α̃0iB(x1)φ(y) eiX̃ −δσγ iA(x1)v̄1(y) eiX cos Z + c.c. + · · · ,
w = δσA(x1)w̄1(y) eiX sin Z + c.c. + · · · ,
p = εσB(x1)p̄0(y) eiX̃ +δσA(x1)p̄1(y) eiX cos Z + c.c. + · · · ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8)

where ε and δ represent the magnitudes of the planar and oblique T-S waves,
and B(x1) and A(x1) their (scaled) amplitude functions, respectively. Hereinafter c.c.
represents the complex conjugate. For convenience, we have defined

γ =
(
α2

0 + β2
)1/2

.

The linear instability problem is described by a multi-layer structure consisting of
five asymptotic regions: the potential-flow zone (i.e. ‘upper-deck’), the main layer, the
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Tollmien layer, the Stokes layer and the critical layer. These layers have thicknesses
of orders σ −1, 1, σ , σ 4 and σ 3, respectively (Bodonyi & Smith 1981). The solution in
each of these regions can be obtained by expanding in terms of small parameter σ ,
and matching between different zones gives the leading-order dispersion relation

λc̃0 = ã0, λc0 = γ. (2.9)

The above relations indicate that in order for c̃0 = c0, we require α̃0 = γ , which will
be assumed to be the case hereinafter. The growth rates are found to be (see e.g.
Goldstein & Durbin 1986; Wu et al. 1997)

2α̃0c
−1
0

B ′

B
= c0(C

+ − C−) + λ2α̃0(2α̃0c0)
−1/2 + iχb, (2.10)

γ c−1
0 (cos θ + sec θ)

A′

A
= c0(c

+ − c−) + λ2γ (2α0c0)
−1/2 + iχa, (2.11)

where we have put

θ = sin−1 β/γ, Yc = c0/λ, µ = −c2
0/4. (2.12)

The first terms on the right-hand sides of (2.10) and (2.11) are the jumps across the
critical layer, while the second terms are the viscous contributions from the Stokes
layer adjacent to the wall. In the linear regime,

C+ − C− = 2πα̃0µYc, c+ − c− = 2πγµYc.

The real constants χa and χb in (2.10) and (2.11) represent O(σ 3) corrections to the
respective wavenumbers, and their specific values are not important as far as the
development of the disturbance is concerned.

3. Nonlinear stage I
3.1. The general case: imperfectly phase-locked modes

Since the planar mode has a larger linear growth rate than the oblique ones, it is
reasonable to assume that the former initially has a much larger magnitude than the
latter, that is,

δ 
 ε 
 1.

Similar to the Rayleigh waves considered in Wu & Stewart (1996) and many
other critical-layer analyses of this type (Goldstein 1995b), the dominant nonlinear
interaction takes place in the common critical layer, whilst the flow in the other layers
remains linear to the required order so that the analysis of those layers is omitted.
For the T-S waves of present interest, the critical layer is in equilibrium and viscosity
dominated (Reid 1965; Bodonyi & Smith 1981). The balance between the inertia and
viscous diffusion in the streamwise momentum equation shows that the transverse
variable for this layer is

η = (y − yc)/σ
3, (3.1)

where yc = σYc.
The first nonlinear regime is reached when the jump across the critical layer

produced by the phase-locked interaction appears at the same order as the linear
jump in the oblique modes. An order-of-magnitude argument indicates that this
occurs when

ε = σ 17/2. (3.2)
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This determines the required threshold amplitude in order for the phase-locked
interaction to exert a leading-order influence on the development of the oblique
modes. We note that this key amplitude is asymptotically larger than the amplitude
required for subharmonic resonance, i.e. ε =O(σ 10) (cf. Mankbadi et al. 1993), which
means that a subharmonic resonance could develop first if the correct modes are
present. However, a difference of O(σ −3/2) ∼ O(R3/20) is unlikely to be substantial
in practical situations where R is typically about O(103). Moreover to justify the
relevance and utility of our theory, we refer to the comparison, albeit qualitative, with
experiment at the end of § 7 (see also figure 7).

It is informative to present the arguments leading to scaling (3.2) as it highlights
some interesting physical and mathematical features of the phase-locked interaction.
The starting point is that both the streamwise and spanwise velocities of the oblique
modes, u3D and w3D say, exhibit a simple-pole singularity at their critical layer
(e.g. Mankbadi et al. 1993), so that their magnitude increases to O(δσ −2) in the
critical layer. Within this layer, the interaction between the planar and oblique modes
produces a forcing term, v2Du3D,y , which is O(εδσ −3), since the normal velocity of
the planar mode v2D ∼ εσ 2. This forcing generates modes with difference and sum
frequencies, both having an O(εδσ −7) streamwise velocity, as can be deduced by
balancing v2Du3D,y with the inertia in the streamwise momentum equation. It turns
out that the sum mode is confined within the critical layer, but the streamwise velocity
of the difference mode, ud1 say, exhibits a jump across the critical layer. As a result, the
difference mode spreads out to the Tollmien layer, where its streamwise velocity, ud

say, must be O(εδσ −7), while the normal velocity is O(εδσ −5) (as can be inferred from
the continuity equation). It follows from the streamwise momentum equation that
the pressure of the difference mode must have an O(εδσ −6) magnitude. The crucial
feature, which makes the present phase-locked interaction interesting and powerful, is
that ud exhibits a simple-pole singularity at the critical level so that the leading-order
streamwise velocity of the difference mode, ud0 say, is O(εδσ −9), much larger than the
locally generated ud1. The planar mode then interacts with this difference mode to
produce the nonlinear forcing v2Dud0,y , which regenerates an oblique component with
an O(δε2σ −14) streamwise velocity. This velocity produces a nonlinear jump across
the critical layer. The phase-locked interaction starts to affect the evolution of the
oblique modes when this jump becomes of the same order as the O(δσ 3) linear jump.
This balance leads to (3.2). The spanwise and normal velocities of this component are
then found to be O(δσ 3) and O(δσ 7) from the spanwise momentum and continuity
equations, respectively.

Guided by the argument above, we seek the expansion for the disturbance

u = ελB eiX̃ +δσ −2{U1 + σ 5U2 + · · ·}A eiX cos Z

+ εδσ −7{σ −2Ud0 + Ud1 + · · ·}A∗BEd cosZ + c.c. + · · · , (3.3)

v = ε{σ 2(−iα̃0c0)B + · · ·} eiX̃

+ δ
{
σ 2(1+σa)(−iγ c0) + σ 4V1 + · · · + σ 7V2 + · · ·}A eiX cosZ

+ εδσ −3{σ −2Vd0 + Vd1 + · · ·}A∗BEd cosZ + · · · , (3.4)

w = δσ −2{W1 + σ 5W2 + · · ·}A eiX sinZ

+ δεσ −7{σ −2Wd0 + Wd1 + · · ·}A∗BEd sin Z + c.c. + · · · , (3.5)

p = εσ α̃0B eiX̃ +δσγ cos θA eiX cosZ + δεσ −6Pd0A
∗BEd cosZ + c.c. + · · · , (3.6)
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where a is an O(1) constant (see Goldstein & Lee 1992; Mankbadi et al. 1993), the
exact value of which is of no significance in our study. The terms proportional to

Ed = exp{iσ (α̃ − α)(x − σct) − iσ 4α̃∆t}

represent the difference mode, generated by the mutual interaction between the
planar and oblique waves. Here we have omitted the sum mode and certain harmonic
modes, as well as the two- and three-dimensional mean-flow distortions, since they
do not contribute any nonlinear effect to the order considered in the present stage.
Specifically, we note that while the mean flow due to the self-interaction of the planar
mode is O(ε2σ −2), which can be larger than the difference mode included in the
expansion, the further interaction of an oblique mode with this mean flow generates
a jump of O(δε2σ −7) in the streamwise velocity, which is much smaller than the
O(δε2σ −14) jump produced by the difference mode.

The leading-order streamwise and spanwise velocities of the oblique T-S waves, U1

and W1, satisfy (Mankbadi et al. 1993; Wu 1993)[
iα0λη − ∂2

∂η2

]
U1 + λ(−iγ c0) = −iα0γ cos θ,

[
iα0λη − ∂2

∂η2

]
W1 = βγ cos θ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

These equations can be solved to obtain

U1 = ic0 tan θ sin θ Π (0), W1 = c0 sin θ Π (0), (3.8)

where we have defined

Π (n) =

∫ ∞

0

ξn exp(−iηξ − ŝξ 3) dξ, ŝ = 1
3
(λα0)

−1. (3.9)

The leading-order velocity components of the difference mode, Ud0 and Wd0, are
driven by the pressure Pd0, as indicated by their governing equations (cf. Wu &
Stewart 1996) [

iαdλ(η − ηd) − ∂2

∂η2

]
Ud0 + λVd0 = −iαdPd0,[

iαdλ(η − ηd) − ∂2

∂η2

]
Wd0 =βPd0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

with

αd = α̃0 − α0, ηd =
α̃0∆

αdλ
. (3.11)

Vd0 and Pd0 are the straightforward continuation of their corresponding solution in
the Tollmien-layer, and have the form

Vd0 = −iγdc0D, Pd0 = γd cos θdD, (3.12)

where γd = (α2
d + β2)1/2, and the constant D, which is a measure of the difference-

mode amplitude, is to be found. Inserting (3.12) into (3.10), and solving the resulting
equations, we find that

Ud0 = ic0 tan θd sin θd DΠ
(0)
d , Wd0 = c0 sin θd DΠ

(0)
d , (3.13)
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where θd = sin−1β/γd ,

Π
(n)
d =

∫ ∞

0

ξn exp(−i(η − ηd)ξ − sdξ
3) dξ, sd = 1

3
(λαd)

−1. (3.14)

The second-order difference-mode terms, Ud1, Vd1 and Wd1, are directly driven by
the Reynolds stresses due to the interaction between the planar and oblique modes.
They are governed by equations

iαdUd1 +
∂Vd1

∂η
+ βWd1 = 0,

[
iαdλ(η − ηd) − ∂2

∂η2

]
Ud1 + λVd1 = (iα̃0c0)U

∗
1,η,[

iαdλ(η − ηd) − ∂2

∂η2

]
Wd1 = (iα̃0c0)W

∗
1,η.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

On eliminating Ud1 and Wd1, we obtain[
iαdλ(η − ηd) − ∂2

∂η2

]
Vd1,ηη = iα̃2

0c
2
0 sin θ tan θΠ∗(2), (3.16)

which has the solution

Vd1,ηη = i
α̃0

αd

c3
0 sinθ tanθ

∫ ∞

0

∫ ∞

0

ξ 2 exp (−(ŝ+sd)ξ
3 − sd(ζ − ξ )3+iηdζ −i(ζ −ξ )η) dξ dζ.

(3.17)
There is a jump in Vd1,η, namely

Jd ≡ Vd1,η(∞) − Vd1,η(−∞) = 2πi
α̃0

αd

c3
0 sin θ tan θI2, (3.18)

where we have defined

In(ηd) =

∫ ∞

0

ξn exp(−(ŝ + sd)ξ
3 + iηdξ ) dξ. (3.19)

Matching Vd1,η with the Tollmien-layer solution determines

D = (−iγdc0)
−1χJd; (3.20)

the constant χ must be found by considering the solutions in the Tollmien layer, the
main layer and the upper layer. This amounts to solving a boundary-value problem
with inhomogeneous jump condition (cf. Wu & Stewart 1996). We omit the details
(which are similar to those in Jennings 1997), and give only the final result

χ =
γd

λ2

(
1 − γd

γ

)−1

. (3.21)

The amplitude of the difference mode becomes infinite if γd = γ (i.e. if αd = α0). This is
expected since it corresponds to subharmonic resonance, which appears as a singular
limit of the phase-locked interaction. The relations (3.12) and (3.20) indicate that the
pressure Pd0 is driven by the nonlinear interaction within the critical layer through
the velocity jump (3.18). Through Pd0, the effect of the interaction is ‘transmitted’ to a
much lower order, forcing the large-amplitude velocity components Ud0 and Wd0. It is
this feature that makes the phase-locked interaction very effective (cf. Wu & Stewart
1996).
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The planar mode interacts with the leading-order difference mode to regenerate
the components at the fundamental frequency of the oblique modes, U2, V2 and W2.
Their orders of magnitude in the expansion (3.3)–(3.6) were determined by the scaling
argument given above. It is found that (U2, V2, W2) satisfies the equations (which are
the steady version of those in Wu & Stewart 1996)

iα0U2 +
∂V2

∂η
+ βW2 = 0,

[
iα0λη − ∂2

∂η2

]
U2 + λV2 = (iα̃0c0)|B|2U ∗

d0,η,[
iα0λη − ∂2

∂η2

]
W2 = (iα̃0c0)|B|2W ∗

d0,η,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

from which it follows that[
iα0λη − ∂2

∂η2

]
V2,ηη = 2α0γµc0 + iα̃2

0c
2
0 sin θd tan θdD

∗|B|2Π∗(2)
d . (3.23)

Solving this, we find

V2,ηη = 2γµc0λ
−1Π (0) + i

α̃0

α0

c3
0 sin θd tan θdD

∗|B|2

×
∫ ∞

0

∫ ∞

0

ξ 2 exp(−(ŝ + sd)ξ
3 − ŝ(ζ − ξ )3 − iηdξ − i(ζ − ξ )η) dξ dζ. (3.24)

Matching V2,η with the Tollmien-layer solution determines the jump

c+ − c− = V2,η(∞) − V2,η(−∞) = 2πµγ c0λ
−1 + 2πi

α̃0

α0

c3
0 sin θd tan θdD

∗|B|2I ∗
2 . (3.25)

Substituting (3.25) into (2.11) yields the amplitude equation for the oblique modes

dA

dx1

= κaA + iΥ |B|2A, (3.26)

where we have put

κa = c0(cos θ + sec θ)−1
[
λ2(2α0c0)

−1/2 + 2c2
0λ

−1µπ
]
, (3.27)

Υ = −4π2c9
0(α0αd)

−1 sin θ tan θ sin θd tan θd(γ − γd)
−1I ∗2

2 (cos θ + sec θ)−1. (3.28)

The planar wave still evolves linearly and its amplitude equation is

dB

dx1

= κbB, (3.29)

so that

B = B0 exp(κbx1) with κb = 1
2
c0[λ

2(2α̃0c0)
−1/2 + 2πc2

0λ
−1µ].

Equation (3.26) is subjected to the initial condition

A → A0 exp(κax1) as x1 → −∞,

so that the solution matches to the linear stage upstream. It follows that

A = A0 exp{κax1 + iΥ/(2κb)|B0|2 exp(2κbx1)}. (3.30)

In the general case, iΥ is a complex number. Super-exponential growth arises if
Re(iΥ ) > 0. In figure 1, we plot the real part of iΥ against the scaled phase-speed
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Figure 1. The real part of the coefficient iΥ , Re(iΥ ), vs. ∆ for γ = 0.12: (i) θ = 80◦, (ii)
θ = 70◦, (iii) θ = 50◦, (iv) θ = 35◦. The value γ =0.12 is chosen to be within the main unstable
region of the upper-branch scaling regime; see figure 1 of Wu et al. (1997).

mismatch, ∆, for a selection of obliqueness angle θ . It is clear that for each set
of phase-locked modes, there is an ‘optimal’ value of ∆ which gives the maximum
Re(iΥ ). On the other hand, Re(iΥ ) decreases rapidly as ∆ increases, indicating that
a too large mismatch destroys the interaction under consideration. Re(iΥ ) vanishes
at an infinite number of values of ∆ including ∆ =0. Thus except at these special
values, the amplitude A experiences super-exponential growth/decay. Thus similar to
resonant-triad interaction (Goldstein 1994), the rapid development of the amplitude
will eventually cause the non-equilibrium effect to become as important as viscosity
within the critical layer. This occurs when the instantaneous growth rate of the oblique
modes, σ 4A′/A ∼ σ 4 exp(2κbx1), becomes of O(σ 3), i.e. when

x1 = O
(
κ−1

b log σ −1/2
)
. (3.31)

This new stage will be investigated in § 4. Before that, let us consider the perfectly
locked case ∆ =0, as some interesting features will emerge.

3.2. Perfectly phase-locked modes: wavelength-shortening induced nonlinearity

When the planar and oblique modes are perfectly locked, ∆ =0 and Υ is real. As a
consequence, the nonlinear interaction affects only the phase angle of A(x1). Solution
(3.30) indicates that the wavelength of the oblique modes ‘shortens’ exponentially,
while its modulus continues to evolve exponentially as in the linear regime. At first
sight, the above result seems to suggest that the phase-locked interaction is of no
significance at all for the perfectly phase-locked modes. This however is not the case,
because the rapid modulation of the phase induces velocity components, given by
(3.44) and (3.45) below. These interact with the planar wave. The jump contributed
by this interaction will appear at the same order as the linear jump when

x1 = O
(
κ−1

b log σ −1/4
)
, (3.32)

at which point, the phase modulation affects the development of the modulus. We
thus introduce the shifted coordinate

x̂ = x1 − κ−1
b log σ −1/4. (3.33)
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For x̂ = O(1), we may write B(x1) = σ −1/4B̂ , and the magnitude of the planar mode
rises to

ε̂ = εσ −1/4 = σ 33/4, (3.34)

which is still asymptotically smaller than the required threshold magnitude of O(σ 5)
for a planar wave to become nonlinear (Goldstein & Durbin 1986). Thus B̂ has the
solution B̂ = B0 exp(κbx̂).

The disturbance in the main part of the flow can still be expanded as (2.8) except
that ε is replaced by ε̂. Similar to the subharmonic resonance scenario considered by
Wundrow et al. (1994), the amplitude function A(x̂) of the oblique modes in this stage
evolves over a shorter length scale than B̂ , and the solution for A takes the WKBJ
form

A(x̂) = Â(x̂) exp(iΘ̂(x̂)/σ 1/2), (3.35)

which is also implied by (3.30). Then we have the multiple-scale substitution

∂

∂x
→ σα

∂

∂X
+ σ α̃

∂

∂X̃
+ σ 7/2c−1Θ̂ ′ ∂

∂Θ̂
+ σ 4c−1 ∂

∂x̂
. (3.36)

The overall flow structure remains the same as in stage I. Outside the critical layer,
the flow is linear up to the order of our interest. A straightforward expansion in each
of the layers and matching show that (cf. Wundrow et al. 1994; Wu et al. 1997)

iγ c−1
0 (cos θ + sec θ)

dΘ̂

dx̂
= c0(â

+ − â−), (3.37)

γ c−1
0 (cos θ + sec θ)

dÂ

dx̂
= c0(ĉ

+ − ĉ−) + λ2γ (2α0c0)
−1/2A, (3.38)

where the jumps (â+ − â−) and (ĉ+ − ĉ−) are to be determined by analysing the
nonlinear dynamics within the critical layer. The expansion for the disturbance is

u = ε̂λB̂ exp(iX̃) + δσ −2
{
Û1 + σ 1/2Û2 + σ 1/2Û3 + σÛ4+ · · ·

}
Â exp(iΘ̂/σ 1/2+iX) cosZ

+ ε̂δσ −7
{
σ −2Ûd0 + σ −3/2Ûd1 + Ûd2 + σ 1/2Ûd3 + · · ·

}
Â∗B̂ exp(−iΘ̂/σ 1/2)Ed cosZ

+ c.c. + · · · , (3.39)

v = ε̂σ 2(−iα̃0c0)B̂ exp(iX̃) + δ
{
σ 2(1+σa)(−iγ c0)

+σ 4(−iγ λη) + σ 13/2V̂3 + σ 7V̂4 + · · ·
}
Â exp(−iΘ̂/σ 1/2 + iX) cosZ

+ ε̂δσ −3
{
σ −2V̂d0 + σ −3/2V̂d1 + V̂d2 + σ 1/2V̂d3 + · · ·

}
Â∗B̂ exp(−iΘ̂/σ 1/2)Ed cos Z

+ c.c. + · · · , (3.40)

w = δσ −2
{
Ŵ1 + σ 1/2Ŵ2 + σ 9/2Ŵ3 + σ 5Ŵ4 + · · ·

}
Â exp(iΘ̂/σ 1/2 + iX) sinZ

+ ε̂δσ −7
{
σ −2Ŵd0 + σ −3/2Ŵd1 + Ŵd2 + σ 1/2Ŵd3 + · · ·

}
Â∗B̂ exp(−iΘ̂/σ 1/2)Ed sinZ

+ c.c. + · · · , (3.41)

p = ε̂σ α̃0B̂ exp(iX̃) + δσγ cos θÂ exp(iΘ̂/σ 1/2 + iX) cos Z

+ ε̂δσ −6
{
P̂d0 + σ 1/2P̂d1

}
Â∗B̂ exp(−iΘ̂/σ 1/2)Ed cos Z + c.c. + · · · . (3.42)

The leading-order streamwise and spanwise velocities of the oblique modes, Û1 and
Ŵ1, are the same as given in (3.8), while for the difference mode,

P̂d0 = Pd0, Ûd0 = Ud0, Ŵd0 = Wd0, Ûd2 = Ud1, Ŵd2 = Wd1.
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The jump (â+ − â−) is given by the second term in (3.25), and using it in (3.37), we
obtain the equation for the phase Θ̂

Θ̂ ′ = Υ |B̂|2. (3.43)

In order to derive the governing equation for the amplitude Â, we need to consider
the second-order fundamental components in (3.39) and (3.41), Û2 and Ŵ2, which
satisfy the equations [

iα0λη − ∂2

∂η2

]
Û2 = c0 tan θ sin θ Θ̂ ′(x̂)Π (0), (3.44)[

iα0λη − ∂2

∂η2

]
Ŵ2 = −ic0 sin θ Θ̂ ′(x̂)Π (0). (3.45)

The solution is found to be

Û2 = (α0λ)
−1c0 tanθ sinθ Θ̂ ′(x̂) Π (1), Ŵ2 = −i(α0λ)

−1c0 sinθ Θ̂ ′(x̂) Π (1). (3.46)

These velocity components are induced by the modulation of the phase Θ̂(x̂), since
their forcing terms are proportional to Θ̂ ′. A similar scenario arises in the cases of
oblique-mode (Wu et al. 1997), and resonant-triad interactions (Wundrow et al. 1994).

As with Vd0 and Pd0, the solution for V̂d1 and P̂d1 can be written as

V̂d1 = (−iγdc0D̂)Θ̂ ′, P̂d1 = γd cos θdD̂Θ̂ ′, (3.47)

with constant D̂ to be determined later. The governing equations for Ûd1, V̂d1 and
Ŵd1 are [

iαdλη − ∂2

∂η2

]
Ûd1 + λV̂d1 = −iαdP̂d1 + iΘ̂ ′Ûd0, (3.48)[

iαdλη − ∂2

∂η2

]
Ŵd1 = βP̂d1 + iΘ̂ ′Ŵd0, (3.49)

which we solve to obtain

Ûd1 = ic0 sin θd tan θd

{
D̂Π

(0)
d + i(αdλ)

−1DΠ
(1)
d

}
Θ̂ ′, (3.50)

where D is given by (3.20).
The back effect of the phase modulation on the modulus is facilitated by Û2 and

Ŵ2 (the wave-length shortening induced velocities) interacting with the planar wave
to generate those velocity components of the difference mode that are represented by
Ûd3, V̂d3 and Ŵd3 in (3.39)–(3.41). They satisfy

iαdÛd3 + Vd3,η + βŴd3 = 0.[
iαdλη − ∂2

∂η2

]
Ûd3 + λV̂d3 = (iα̃0c0)Û

∗
2,η + iΘ̂ ′Ûd2,[

iαdλη − ∂2

∂η2

]
Ŵd3 = (iα̃0c0)Ŵ

∗
2,η + iΘ̂ ′Ŵd2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.51)

It follows that [
iαdλη − ∂2

∂η2

]
V̂d3,ηη = − α̃0

α0

c3
0 sin θ tan θΘ̂ ′Π∗(3) + Rs, (3.52)
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where

Rs = − α̃0

αd

c3
0 sinθ tanθ Θ̂ ′

∫ ∞

0

∫ ∞

0

ξ 2 exp(−(ŝ + sd)ξ
3 − sd(ζ − ξ )3 − i(ζ − ξ )η) dξ dζ.

Solving (3.52), we find that

Id ≡ V̂d3,η(∞) − V̂d3,η(−∞) = −2π
α̃0

α0α
2
d

c4
0 sinθ tanθ Θ̂ ′I3(0). (3.53)

This jump induces the pressure P̂d1, which in turn drives Ûd1 and Ŵd1. Matching V̂d3,η

to the solution in the Tollmien layer shows that

D̂ = (−iγdc0)
−1χId

with χ being given by (3.21).
Next, we solve for V̂4 in (3.40), which is required to determine the jump (ĉ+ − ĉ−).

It is found that the governing equation for V̂4 is[
iα0λη − ∂2

∂η2

]
V̂4,ηη = 2α0c0γµ − iΘ̂ ′V̂3,ηη + (γ 2c0)|B̂|2Û ∗

d1,ηη, (3.54)

where V̂3,ηη = V2,ηη as given by (3.24). Solving (3.54) by Fourier transform, we obtain

ĉ+ − ĉ− ≡ Â
[
V̂4,η(+∞) − V̂4,η(−∞)

]
= 2γ c0λ

−1µπÂ + qΘ̂ ′|B̂|2Â, (3.55)

where

q = −8π2(ααd)
−2c8

0 sin θ tan θ sin θd tan θdI2(0)I3(0)

(
1 − γd

γ

)−1

. (3.56)

Substituting (3.55) into (3.38), we obtain the evolution equation for the modulus Â:

Â′ = κaÂ + Υ̂aΘ̂
′|B̂|2Â, (3.57)

with Υ̂a = γ −1c2
0 q(cos θ + sec θ)−1. Equation (3.57) is coupled to (3.43), indicating

an interplay between the phase and modulus. The nonlinear term in (3.57) can be
interpreted as arising from wavelength ‘shortening’ or dilation. Inserting (3.43) into
(3.57) yields a single equation governing the modulus

Â′ = κaÂ + Υ̂ |B̂|4Â, (3.58)

where

Υ̂ ≡ Υ Υ̂a = 32π4c6
0 sin2θ tan2θ sin2θd tan2θdI3(0)(cosθ + secθ)−2(γ − γd)

−2. (3.59)

The solution for Â is

Â = A0 exp{κax̂ + Υ̂ /(4κb)|B0|4 exp(4κbx̂)}. (3.60)

Now since the coefficient Υ̂ is always positive, the amplitude undergoes super-
exponential growth, regardless of the obliqueness angle θ . Note that the super-
exponential growth, once started, is much faster than the non-zero mismatch case, since
the rate is proportional to exp(4κbx̂) as opposed to exp(2κbx̂). The non-equilibrium
effect associated with this rapid amplification becomes a leading-order effect when

x̂ = O
(
κ−1

b log σ −1/4
)
,

which from (3.33) is equivalent to (3.31), namely,

x1 = O
(
κ−1

b log σ −1/2
)
.
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Thus, the disturbance of perfectly phase-locked modes enters the non-equilibrium
stage at the same downstream location as in the imperfectly phase-locked case.

A similar analysis can be performed for other values of ∆ at which Re(iΥ ) = 0 to
show that the disturbance follows the same evolution route as for ∆ =0.

4. Nonlinear stage II: WKBJ regime with a non-equilibrium critical layer
We have shown that with or without phase-speed mismatching, the disturbance

evolves, albeit via somewhat different routes, into the non-equilibrium critical-layer
regime when

x1 = O
(
κ−1

b log σ −1/2
)
.

Introduce now

x† = x1 − κ−1
b log σ −1/2 = x̂ − κ−1

b log σ −1/4. (4.1)

In this regime, the magnitude of the planar mode rises to

ε̄ = σ 8,

while the magnitude of the oblique modes becomes of order δ̄ ≡ δ eΥ/σ if ∆ �= 0 or

δ eΥ̂ /σ if ∆ =0. We shall assume that δ̄ is sufficiently small such that the back effect of
the oblique modes on the planar mode remains negligible. Then the latter continues
to grow exponentially with its amplitude function B† = B0 exp(κbx

†). The amplitude
function of the oblique modes now takes the WKBJ form

A = Ā(x†) exp(Φ(x†)/σ ), (4.2)

where Φ is a complex function. The development of the oblique modes is primarily
characterized by Φ(x†) with Ā(x†) being of secondary importance. Based on the
analogy of the present form of solution with that in § 3, we can infer that Φ is related
to the jump across the critical layer via

γ c−1
0 (cos θ + sec θ)

dΦ

dx† = c0(ā
+ − ā−), (4.3)

which is obtained by replacing iΘ̂ in (3.37) by Φ . The expansion in the critical layer
still takes the form (3.3)–(3.6) except that ε and δ̂ are replaced by ε̄ and δ̂, respectively.
The leading-order terms, U1 and W1, now satisfy[

iα0λη + Φ ′ − ∂2

∂η2

]
U1 + λ(−iγ c0) = −iα0γ cos θ,

[
iα0λη + Φ ′ − ∂2

∂η2

]
W1 =βγ cos θ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)

The non-equilibrium effect is reflected by the additional term Φ ′ in the operator. The
above equations have the solution

U1 = ic0 tan θ sin θ Π̄ (0), W1 = c0 sin θ Π̄ (0), (4.5)

where we have defined

Π̄ (n) =

∫ ∞

0

ξn exp(−iηξ − (α0λ)
−1Φ ′ξ − ŝξ 3) dξ. (4.6)

The solution indicates that owing to the non-equilibrium effect, the normal distribution
of the leading-order streamwise and spanwise velocities in the present stage undergoes



280 X. Wu, P. A. Stewart and S. J. Cowley

deformation as their amplitudes evolve, i.e. both the amplitude and the ‘shape’ of
the oblique modes are affected by the phase-locked interaction. This is in contrast to
stage I, in which the interaction affects the amplitude only, while the ‘shape’ of the
disturbance is still determined by linear dynamics.

The governing equations for Ud0 and Wd0 are[
iαdλ(η − ηd) + Φ ′∗ − ∂2

∂η2

]
Ud0 + λVd0 = −iαdPd0,[

iαdλ(η − ηd) + Φ ′∗ − ∂2

∂η2

]
Wd0 = βPd0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

Similar to the previous stage, Vd0 and Pd0 are given by

Vd0 = (−λγdc0D
†), Pd0 = γd cos θdD

†, (4.8)

where

D† = (−iγdc0)
−1χJ

†
d , (4.9)

with J
†
d given by (4.14). It is easy to show that

Ud0 = ic0 tan θd sin θd D†Π̄
(0)
d , Wd0 = c0 sin θd D†Π̄

(0)
d , (4.10)

with

Π̄
(n)
d =

∫ ∞

0

ξn exp(−i(η − ηd)ξ − (αdλ)
−1Φ ′∗ξ − sdξ

3) dξ. (4.11)

The second-order velocity components of the difference mode, Ud1, Vd1 and Wd1, are
governed by equations

iαdUd1 +
∂Vd1

∂η
+ βWd1 = 0,

[
iαdλ(η − ηd) + Φ ′∗ − ∂2

∂η2

]
Ud1 + λVd1 = (iα̃0c0)U

∗
1,ηη,[

iαdλ(η − ηd) + Φ ′∗ − ∂2

∂η2

]
Wd1 = (iα̃0c0)W

∗
1,ηη,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.12)

which, after eliminating Ud1 and Wd1, give[
iαdλ(η − ηd) + Φ ′∗ − ∂2

∂η2

]
Vd1,ηη = iα̃2

0c
2
0 sin θ tan θΠ̄ ∗(2). (4.13)

After solving this equation, it is found that there is a jump in Vd1,η, namely,

J
†
d ≡ Vd1,η(∞) − Vd1,η(−∞)

= 2πi
α̃0

αd

c3
0 sinθ tanθ

∫ ∞

0

ξ 2 exp(−(ŝ + sd)ξ
3 − (α−1

d + α−1
0 )λ−1Φ ′∗ξ + iηdξ ) dξ.

(4.14)

The jump (ā+ − ā−) (see (4.3)) is obtained by considering V2,ηη, which satisfies[
iα0λη + Φ ′ − ∂2

∂η2

]
V2,ηη = iα̃2

0c
2
0 sin θd tan θdD

†∗|B†|2Π̄∗(2)
d . (4.15)
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Figure 2. Solid lines, the super-exponential growth rate Φ ′ vs. κbx
† (a) θ = 40◦, (b) θ = 70◦.

Dashed lines, the far upstream behaviour (4.18). Dotted lines, the far downstream behaviour
(4.19).

Solving this and matching V2,η to the Tollmien-layer solution, we obtain

ā+ − ā− = 2i
α̃0

α0

c3
0 sin θd tan θdD

†∗|B†|2

×
∫ ∞

0

ξ 2 exp(−(ŝ + sd)ξ
3 − (α−1

d + α−1
0 )λ−1Φ ′ξ − iηdξ ) dξ. (4.16)

Inserting the above result into (4.3), we arrive at a transcendental equation for (the
local growth rate) Φ ′,

Φ ′ =
iΥ

I ∗2
2

{∫ ∞

0

ξ 2 exp(−(ŝ + sd)ξ
3 −

(
α−1

d + α−1
0

)
λ−1Φ ′ξ − iηdξ ) dξ

}2

|B†|2. (4.17)

Since B† = B0 eκbx
†
, it follows that

Φ ′ → iΥ |B0|2 exp(2κbx
†) + Υ̂ |B0|4 exp(4κbx

†) as x† → −∞, (4.18)

therefore matching to the solution in the previous stage (cf. (3.30) and (3.60)). On the
other hand, as x† → ∞,

Φ ′ → Φ∞ exp
(

2
7
κbx

†) with Φ∞ = (iΥ/I ∗2
2 )1/7(αdα0λ/α̃0)

6/7. (4.19)

For x† = O(1), equation (4.17) is solved using the Newton-Raphson method and
representative results are shown in figure 2 for γ = 0.12, θ =40o and θ = 70o with
the phase-speed mismatch parameter ∆ being the optimal value for each θ . The
non-equilibrium effect inhibits the amplification, converting the growth rate from
being exp(2κbx

†) in the equilibrium regime to exp(2κbx
†/7). However, it should be

noted that the latter behaviour may not be attainable if the initial magnitude of the
oblique modes is not sufficiently small. In that case, the disturbance enters the fully
interactive stage before the asymptote (4.19) is reached (see below). In Figure 3, we
plot the normal distribution of the leading-order streamwise velocity of the oblique
modes. The deformation of the modal shape is characterized by ‘thickening’ of the
region in which the disturbance concentrates, but there is little shift of the position
of the velocity maximum.
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Figure 3. Deformation of the modal shape in the WKBJ regime illustrated by the modulus
of the streamwise velocity, |U1|, at different downstream locations. (a) θ = 40◦, κbx

† = 4 (i), 6
(ii), 8 (iii). (b) θ = 70◦, κbx

† =4 (i), 6 (ii), 8 (iii). The dotted line represents the distribution in
the linear regime.

5. Nonlinear stage III: the fully interactive regime
5.1. Scaling and amplitude equations

The continued growth of the oblique modes will eventually lead to a new stage in
which the self-interaction between the oblique modes becomes as important as the
phase-locked interaction considered earlier. This occurs when the unscaled magnitude
of the oblique modes reaches O(σ 7), i.e. (cf. Wu et al. 1997)

δ̃ ≡ δ̄ exp(Φ(x†
s )/σ ) = σ 7.

The above relation indicates that the initial magnitude of the oblique modes
determines the downstream location x†

s near which the fully interactive regime
commences. The development is described by (4.17) as long as (x†

s − x†) � O(σ ).
However, in the O(σ ) neighbourhood of x†

s , the WKBJ solution ceases to be valid,
because the oblique modes produce a back reaction on the planar wave so that the
latter no longer evolves linearly. Both the planar and oblique modes evolve over the
same fast scale

x̃ =
(
x† − x†

s

)
/σ. (5.1)

The magnitude of the planar mode remains O(σ 8), namely

ε̃ = σ 8. (5.2)

The solution in the main part of the boundary layer again takes the form (2.8)
provided that ε and δ are replaced by ε̃ and δ̃, respectively, and A(x1) and B(x1)
by Ã(x̃) and B̃(x̃), respectively. The flow outside the critical layer remains linear
and inviscid to the order of our interest, and the solution can be sought by a
straightforward expansion. Matching the solutions in different regions gives (see Wu
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1995)

ic−1
0 (cos θ + sec θ)

dÃ

dx̃
= γ 2c0(c̃

+ − c̃−), (5.3)

2ic−1
0

dB̃

dx̃
= α̃2

0c0(C̃
+ − C̃−), (5.4)

where the jumps (c̃+ − c̃−) and (C̃+ − C̃−) are to be determined by considering the
nonlinear interactions in the critical layer.

To illustrate the main feature of this regime and also to facilitate the matching with
the next stage, we write the first few terms in the expansion within the critical layer:

u = ε̃λB̃ eiX̃+ δ̃σ −2{(1+σa)Ũ1 + σ 2(λ secθÃ) + · · ·} eiX cosZ + c.c. + · · · , (5.5)

v = ε̃σ 2(−iα̃0c0)B̃ eiX̃

+ δ̃σ 2{(1+σa)(−iγ c0)Ã+σ 2(−iγ λÃ) η + · · ·} eiXcosZ+c.c. + · · · , (5.6)

w = δ̃σ −2{W̃1 + · · ·} eiX sinZ + c.c. + · · · , (5.7)

p = ε̃σ B̃ eiX̃+ δ̃σγ cosθÃ eiX cosZ + c.c. + · · · . (5.8)

The leading-order streamwise and spanwise velocities, Ũ1 and W̃1, are governed by
equations [

∂

∂x̃
+ iα0λη − ∂2

∂η2

]
Ũ1 + λ(−iγ c0Ã) = −iα0γ cos θÃ,

[
∂

∂x̃
+ iα0λη − ∂2

∂η2

]
W̃1 = βγ cos θÃ.

The non-equilibrium effect is now represented by ∂/∂x̃ in the operator. The above
equations have the solution

Ũ1 = iγ 2 sin2θ Π̃, W̃1 = γ 2 sinθ cosθ Π̃, (5.9)

with

Π̃ =

∫ ∞

0

Ã(x̃ − ξ ) exp(−iα0ληξ − sξ 3) dξ, s = 1
3
α2

0λ
2. (5.10)

The nonlinear interactions within the critical layer are the same as in Wu &
Stewart (1996) and Wu (1996) so that the jumps across the critical layer, (c+ − c−)
and (C+ − C−), can be borrowed from there without performing a detailed analysis.
After substituting them into (5.3) and (5.4), we obtain the amplitude equations

dÃ

dx̃
= iΥ̃p

∫ ∞

0

∫ ∞

0

Kp(ξ, η|s)) exp(−iα0∆(ξ+η))B̃(x̃−σ̂dξ )B̃∗(x̃−ξ −σ̂ η)Ã(x̃−ξ −η) dξ dη

+ iΥ̃a

∫ ∞

0

∫ ∞

0

Ka(ξ, η|s)Ã(x̃ − ξ )Ã(x̃ − ξ − η)Ã∗(x̃ − 2ξ − η) dξ dη, (5.11)

dB̃

dx̃
= iΥ̃b

∫ ∞

0

∫ ∞

0

Kb(ξ, η|s) exp(−iα̃0∆(ξ+η))Ã(x̃−ξ )B̃(x̃−ξ −η)Ã∗(x̃−νsξ −ν0η) dξ dη

+ iΥ̃c

∫ ∞

0

∫ ∞

0

Kc(ξ, η|s) exp(−iα̃0∆ξ )B̃(x̃−ξ )Ã(x̃−ξ −η)Ã∗(x̃−νsξ −η) dξ dη,

(5.12)
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where

Kp(ξ, η|Λ) = ξ 2η2 exp{−Λσ̂ 2
d (ξ 3 + η3)}, (5.13)

Υ̃p = −4π2α4
dα

4
0γ γdc

3
0 sin2 θ sin2 θd(γ − γd)

−1(cos θ + sec θ)−1, (5.14)

Υ̃a = −πγ 2α3
0λ

3c5
0 sin2θ(cos θ + sec θ)−1, (5.15)

Υ̃b = Υ̃c = − 1
2
πα3

0λ
3c5

0γ
2 sin2 θ, (5.16)

σ̂ = α0/α̃0, σ̂d = αd/α̃0, σ̂s = 1 + σ̂0,

ν0 = α̃0/α0, νd = αd/α0, νs = 1 + ν0.

}
(5.17)

The kernel Ka(ξ, η|s) is given by (3.85) of Wu et al. (1993) while Kb and Kc are
given by (A.1) and (A.2) of Wu & Stewart (1996) (with σ , σd etc. being replaced
by σ̂ , σ̂d as defined in (5.17)). Here the terms representing the linear growth do not
enter the amplitude equations since the disturbance now evolves over a much shorter
streamwise scale. It is worth comparing the coupled amplitude equations (5.11)–(5.12)
with those for subharmonic resonance (Goldstein & Lee 1992; Goldstein 1995a; Wu
1995). The main difference is that the cubic term with kernel Kp now replaces a
quadratic term to provide the vital catalytic effect of promoting the growth of the
oblique modes. The term with kernel Ka , which represents the mutual interaction of
the oblique modes (Goldstein & Choi 1989; Wu et al. 1993, 1997), remains the same.
The terms describing the back action of the oblique modes on the planar wave are
similar, but kernels Kb and Kc derived here actually generalize those for subharmonic
resonance in that the former reduce to the latter in the special case σ̂ = σ̂d =1/2.

The appropriate initial condition of (5.11) is determined by the requirement that
the solution in the present stage matches to that in stage II. After rewriting (4.2) and
B†(x†) in terms of x̃, we have that

Ã(x̃) → Ā(x†
s ) exp(Φ ′(x†

s )x̃), B̃(x̃) → exp(κbx
†
s ) as x̃ → −∞. (5.18)

The normal distribution of the leading–order streamwise and spanwise velocities
continues to undergo deformation, now under the combined influence of both the
phase-locked interaction and the self-interaction. More importantly, the distortion of
the modal shape takes place over the same length scale as the amplitudes.

5.2. Study of the amplitude equations

The amplitude equations (5.11) and (5.12) subject to the initial conditions (5.18) are
solved numerically by using an Adam–Moulton finite-difference scheme. In order to
march the solution downstream, we assume that when x̃ � −T0 
 0, Ã and B̃ can be
approximated by its asymptote, i.e. by the right–hand side of (5.18). The integrals over
the infinite domain D = [0, ∞) × [0, ∞) are evaluated by integrating over a sufficiently
large but finite domain, D0 = [0, X0] × [0, Y0] say, while the tails over (D − D0) are
approximated by using the asymptotes of Ã and B̃ .

The problem involves a number of parameters: γ , θ , ∆, x†
s , A0 and B0. In our

calculations, we choose the first three to be the same as those in figure 2 so as to
examine the continuation of the solutions in the previous stage into the present fully
interactive stage. The value of B0 is taken to be unity without losing generality. As a
representative case, we choose κbx

†
s = 4 and A0 = 1.

Numerical solutions suggest that the solution for Ã(x̃) and B̃(x̃) terminates at a
singularity at a finite distance, x̃s say. The singularity has the same structure as that
proposed by Wu & Stewart (1996) for the phase-locked interaction of Rayleigh waves,
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Figure 4. ln |Ã| and ln |B̃| vs. s1/3x̃ for γ = 0.12: (a) θ = 40◦, (b) θ = 70◦. The dotted lines
represent the local singular solution (5.19).

namely,

Ã(x̃) → ã0

(x̃s − x̃)3+iψa
, B̃(x̃) → b̃0

(x̃s − x̃)7/2+iψb
as x̃ → x̃s, (5.19)

where ã0 and b̃0 are complex, and ψa and ψb are real numbers, respectively. The values
of ψa and ψb along with |ã0| and |b̃0| can be determined analytically (the details can
be found in Wu & Stewart 1996). It is worth noting that while the singularity in Ã is
of the same form as in the cases of oblique-mode interaction (Goldstein & Choi 1989;
Wu et al. 1997) and subharmonic resonance (Goldstein & Lee 1992), the singularity
in B̃ is different because of the cubic kernel Kp in (5.11).

The development of the amplitudes is shown in figure 4. The oblique modes first
induce a back reaction on the planar mode, causing the latter to amplify rapidly. The
subsequent two-way interactions lead to the formation of the singularity.

From the physical point of view, the most important feature of the present regime
is the rapid distortion of the modal shape with the critical layer. This is illustrated
in figure 5. For θ = 40◦, the deformation starts with a drifting of the position of the
maximum velocity away from the wall (figure 5a), while for θ = 70◦, the position
of the maximum descends towards the wall (figure 5b). In both cases, the velocity
distribution evolves into a much flatter pattern in the later stage, indicating that the
disturbance is no longer concentrated in a thin layer. The thickening of the critical
layer and the deformation of Ũ1 and W̃1 can be described by a similarity variable
(Wu et al. 1997)

η̂ =
(
x̃s − x̃

)
η. (5.20)

The function Π̃ defined in (5.10), (which describes the normal distribution of the
leading-order streamwise and spanwise velocity components of the oblique modes),
has the asymptotic solution

Π̃ → (x̃s − x̃)−(2+iψa )

∫ ∞

0

(1 + ξ )−(3+iψa ) exp(−iα0λη̂ξ ) dξ. (5.21)
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Figure 5. ‘Shape deformation’ in the fully interactive stage illustrated by the modulus of
streamwise velocity, |Ũ1|, at different downstream locations. (a) θ = 40◦, s1/3x̃ = 4.13 (i), 4.63
(ii), 5.13 (iii). (b) θ = 70◦, s1/3x̃ = 3.5 (i), 3.75 (ii), 4.0 (iii). The dotted line represents the
distribution in the upstream limit x̃ → ∞.

In figure 6, we plot the distributions of |Ũ1| at different streamwise stations against
η̂. The shape of Ũ1 appears to approach the final similarity form (5.21) as x̃ → x̃s ,
confirming the asymptotic result.

The spanwise dependent mean-flow distortion generated by the oblique-wave
interaction is reduced to zero in a viscous wall layer. Its width shrinks as σ 7/3(x̃s −x̃)1/3

when x̃s is approached. This layer remains passive although it becomes strongly
nonlinear when (x̃ − x̃s) = σ 7/5, at which stage its dynamics is governed by the
interactive boundary-layer equations with known displacement but an unknown
spanwise pressure gradient. In this ‘inverse problem’ (cf. Smith & Daniels 1981), the
pressure gradient is allowed to adjust itself. On this basis, we will assume that no
singularity forms prior to x̃s , and the discussion in the next section will be based on
this assumption, the confirmation of which however, requires a numerical solution of
the interactive boundary-layer equations.

6. Nonlinear stage IV: unsteady inviscid triple-deck regime
As was noted in Wu et al. (1997), with the critical-layer thickening like (x̃s − x̃)−1

(see (5.20)), it eventually merges with the Tollmien layer when

x̃s − x̃ = O(σ 2). (6.1)

This and ensuing scenarios of the evolution are similar to those for subharmonic
resonance in a decelerating boundary layer, for which the critical layer is non-
equilibrium in the linear regime (Goldstein & Lee 1992). In the neighbourhood
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Figure 6. Distribution of |Ũ1| in terms of the similarity variable η̂. (a) θ = 40◦, s1/3x̃ = 4.13 (i),
4.63 (ii), 5.13 (iii). (b) θ =70◦, s1/3x̃ =3.75 (i), 4.0 (ii), 4.125 (iii). The dotted line corresponds
to the asymptotic form (5.21).

specified by (6.1), the disturbance enters yet another new stage which is distinguished
in that (a) the unscaled growth rates of both the planar and oblique waves, σ 3(B̃ ′/B̃)
and σ 3(Ã′/Ã), have now increased to O(σ ) and are of the same order as their
wavenumbers, and (b) all the harmonics have the same order of magnitude as that
of the fundamental. Note also that the planar mode has acquired the same size as
the oblique modes. The solution in this regime can be described by the streamwise
variable

x̄ = c (x̃ − x̃s)/σ
2. (6.2)

along with the time and spanwise variables

t̄ = σ 2t, z̄ = σz.

The flow now consists of four layers: the upper layer, the main layer, the Tollmien
layer and a viscous wall sublayer. It turns out that the flow is governed by the inviscid
version of the nonlinear three-dimensional unsteady triple-deck equations. It has been
shown earlier that the nonlinear interaction between a pair of oblique T-S modes or
among a resonant triad can evolve into such a regime (Wu et al. 1997; Goldstein
1994, 1995a). The Tollmien layer, which is described by the transverse variable

Y = y/σ,

becomes fully nonlinear, and the solution in this layer expands as

(u, v, w, p) = (σU, σ 3V, σW, σ 2P ) + · · · , (6.3)

as suggested by (5.6)–(5.8), (5.9), (5.10), (5.21) and (6.2). Substitution of the above
expansion into the Navier–Stokes equations yields, to leading order, the governing
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equations for U , V , W and P

∂U

∂x̄
+

∂V

∂Y
+

∂W

∂z̄
= 0,

∂U

∂t̄
+ U

∂U

∂x̄
+ V

∂U

∂Y
+ W

∂U

∂z̄
= −∂P

∂x̄
,

∂W

∂t̄
+ U

∂W

∂x̄
+ V

∂W

∂Y
+ W

∂W

∂z̄
= −∂P

∂z̄
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.4)

The pressure P , which is a function of x̄, t̄ and z̄ only, is related to the displacement
D(x̄, t̄ , z̄) via (see e.g. Smith & Stewart 1987; Zhuk & Ryzhov 1989)

P = − 1

2π

∫ ∞

−∞

∫ ∞

−∞

∂2D/∂ξ 2

[(x̄ − ξ )2 + (z̄ − η)2]1/2
dξ dη. (6.5)

The system (6.4)–(6.5) is subjected to the boundary condition: V = 0 at Y =0, while
the condition as Y → +∞ is given by matching U and W with their counterparts in
the main layer, namely (Zhuk & Ryzhov 1989; Wu et al. 1997)

U → λY + D(x̄, t̄ , z̄) +

{ ∫ ∞

0

ξPz̄z̄(x̄ − ξ, t̄ , z̄) dξ

}
Y −1 ,

W →
{ ∫ ∞

0

Pz̄(x̄ − ξ, t̄ , z̄) dξ

}
Y −1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.6)

Since the present stage follows from the formation of the singularity (5.19), the
appropriate ‘initial condition’ is provided by matching with the asymptotic behaviour
of the critical-layer solution in the previous stage. After rewriting (5.6)–(5.8) in terms
of (6.2) by making use of (5.9), (5.10), (5.19)–(5.21), we find that as x̄ → −∞,⎡
⎢⎣

U −λY
V

W

P

⎤
⎥⎦ →

⎡
⎢⎢⎣

(
−iλγ sin2θ x̄G(x̄, Y )+λ secθ

)
cosβz̄

(−iγ λ)Y cosβz̄

−λγ sinθ cosθ x̄G(x̄, Y ) sinβz̄

γ cosθ cosβz̄

⎤
⎥⎥⎦

× ã0(−x̄/c0)
−(3+iψa ) exp(iαφ + iα(x̄ − ct̄))

+

⎡
⎢⎣

λ
(−iα̃0λY )

0
α̃0

⎤
⎥⎦b̃0(−x̄/c0)

−(7/2+iψb) exp(iα̃φ + iα̃[x̄ − (c + σ 2∆)̄t ]) + c.c.,

(6.7)

where

G(x̄, Y ) =

∫ ∞

0

(1 + ξ )−(3+iψa ) exp(iα0λx̄(Y − Yc)ξ ) dξ, (6.8)

which is obtained by rewriting (5.21) in terms of x̄ and Y , while

φ = c0(x
†
s + κ−1

b log σ −1/2 + σ x̃s)/σ
3.

The system (6.4)–(6.6) was derived by Zhuk & Ryzhov (1989). The present study
suggests that such a regime may indeed be reached from a well-defined initially
linear stage, via a sequence of intermediate weakly nonlinear stages (i.e. stages I–III).
Moreover, by following through these, we are able to give the appropriate initial
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condition that this system must satisfy. The present study and that of Wu et al. (1997)
indicate that the inviscid three-dimensional triple-deck equations are relevant for the
late stage of transition initiated by small disturbances upstream.

Finally, it should be noted that a wall sublayer with a width of O(σ 4) has to
be introduced in order to satisfy the no-slip condition on the wall. The transverse
variable is Ỹ = y/σ 4 and the expansion takes the form

(u, v, w) = (σŨ, σ 6Ṽ , σ W̃ ) + · · · . (6.9)

Substitution of this into the Navier-Stokes equations shows that the flow field
(Ũ , Ṽ , W̃ ) is governed by the unsteady, classical boundary-layer equations

∂Ũ

∂x̄
+

∂Ṽ

∂Ỹ
+

∂W̃

∂z̄
= 0,

∂Ũ

∂t̄
+ Ũ

∂Ũ

∂x̄
+ Ṽ

∂Ũ

∂Ỹ
+ W̃

∂Ũ

∂z̄
= −∂P

∂x̄
+

∂2Ũ

∂Ỹ 2
,

∂W̃

∂t̄
+ Ũ

∂W̃

∂x̄
+ Ṽ

∂W̃

∂Ỹ
+ W̃

∂W̃

∂z̄
= −∂P

∂z̄
+

∂2W̃

∂Ỹ 2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6.10)

with P being already given once the inviscid problem (6.4)–(6.5) is solved.
Solutions of the inviscid triple-deck equations are likely to develop singularities,

and it is known that solutions of the unsteady classical boundary-layer equation (6.10)
can develop finite-time ‘separation’ singularities (e.g. Van Dommelen & Shen 1980;
Van Dommelen & Cowley 1990). It is highly probable that there will be a further
cascade of shorter scales generated in this regime as well, although we do not pursue
that matter here.

7. Discussion and conclusion
In this paper, we have followed the nonlinear evolution of phase-locked planar

and oblique T-S waves, and presented a self–consistent asymptotic description of
the nonlinear stages through which this form of disturbance evolves. We show that
for perfectly phase-locked modes, the initial nonlinear interaction simply alters the
wavelength of the oblique modes, without affecting their magnitude. However, once
the wavelength alteration becomes sufficiently rapid, it produces a back reaction
on the magnitude, causing the latter to amplify super-exponentially. If a small but
non-zero mismatch exists between the phase speeds, the interaction induces a super-
exponential growth/decay immediately. For any given planar mode (α̃, 0) and oblique
mode (α, β) (with α2 + β2 = α̃2 to leading order), there is an ‘optimal’ phase-speed
mismatch which gives the maximum rate of super-exponential growth. Whether
or not the phase-speed mismatch is zero, the rapid amplification of the oblique
modes leads to the second stage where the critical layer is both viscous and non-
equilibrium in its nature. An important feature of the new regime is that the ‘shape’
of the oblique modes deforms during the evolution. The planar mode still evolves
exponentially, but the oblique modes experience a super-exponential growth of a
different form from that in the previous stage. The disturbance enters the third stage
when the self-interaction between the oblique modes and their back effect on the
planar mode become important. The amplitude equations of this fully interactive
regime are found to consist of the same nonlinear terms as those derived by Wu &
Stewart (1996) for the phase-locked interaction of Rayleigh instability waves (and
they also bear some resemblance to the evolution equations for the subharmonic
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resonance, Goldstein 1995a; Wu 1995). Since the linear dynamics associated with
viscosity becomes secondary, it may be said that the Tollmien–Schlichting waves
now take on the characteristics of Rayleigh waves. The ‘shape’ of the oblique modes
undergoes further deformation over the same length scale as their amplitude. The
solution to the amplitude equations is found to develop a singularity within a finite
distance for the parameters considered. We expect this to be a generic feature of the
amplitude equations. In the vicinity of the singularity, the flow is governed by the
fully nonlinear three-dimensional inviscid triple-deck equations. Note that a similar
evolution process, that is the development from the viscous critical-layer regime to
the non-equilibrium critical-layer regime and finally to the fully nonlinear triple-deck
stage, also takes place for the disturbance in the form of subharmonic resonant triad
(Goldstein 1994, 1995a) or of a pair of oblique modes only (Wu et al. 1997). This
final regime serves as the ‘attracting stage’ of three potentially important forms of
disturbances.

In the Appendix, we further show that the amplitude equations that govern the
weakly nonlinear stages can be obtained as limiting forms of the amplitude equations
(5.34)–(5.35) in Wu & Stewart (1996), which were derived in the non-equilibrium,
viscous nonlinear critical layer regime. The latter therefore provide a uniformly valid
description of the whole linear and weakly nonlinear evolution process. This result
implies that one may use them as ‘composite’ equations without tracing various stages,
which may, from the practical point of view, be more convenient. Thus (5.34)–(5.35)
in Wu & Stewart (1996) are the generic equations governing the weakly nonlinear
development of phase-locked modes of both T-S and Rayleigh waves, in pretty much
the same way as the amplitude equations (4.8)–(4.9) in Wu (1995) describe the weakly
nonlinear evolution of subharmonic resonant triads of both T-S and Rayleight waves
(Goldstein 1995a).

A main result of our study is that through the phase-locked interaction, the
dominant planar T-S wave would induce rapid growth of certain oblique modes while
its own nonlinear effect is largely negligible. In this sense, the planar mode acts as
a catalyst, as in the subharmonic resonance mechanism. Of significance is that the
phase-locked interaction operates at a much less restrictive condition. The theoretical
result implies that introduction of a single planar mode to the boundary can promote
all three-dimensional disturbances that share approximately the same phase speed.
This mechanism may have important implications for flow control. We suggest that it
may be responsible for the appearance of broadband disturbances in the late stage of
boundary-layer transition. Strong evidence for such a catalytic effect through phase-
locked interaction has been found in the experiments of Borodulin, Kachanov &
Koptsev (2002a–c), in which broadband low-amplitude noise-like three-dimensional
T-S waves are present among the background disturbances. In the unforced case, these
components simply exhibit a slow growth as anticipated by linear theory. However,
when a single two-dimensional primary wave was introduced, three-dimensional waves
in a wide continuous frequency range all underwent rapid amplification in the form
of super-exponential growth to acquire amplitudes which were at least one order-of-
magnitude larger than those in the unforced case; see figures 13, 14 and 18 of their
paper. All these components were phase-locked (synchronized) with the seeded planar
wave in that they all had nearly the same phase speed, as shown in their figure 20,
which we reproduce in figure 7 for convenience Although such a striking effect was
observed in a decelerating boundary layer, we believe that it is due to the phase-locked
interaction described in this paper because the essential mechanism is generic and is
little affected by the presence of an adverse pressure gradient. In fact, for a suitable
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Figure 7. Phase-speed CX (normalized by the slip velocity Ue) vs. frequency f , showing phase
synchronism of amplified broadband disturbances. Forced case: � 1 −−1′; unforced case: ×,
2 · · · 2′. [Reproduced from Borodulin, Kachanov & Koptsev 2002.]

small adverse pressure gradient, the critical layer can be non-equilibrium at the onset
(cf. Goldsetein & Lee 1992) so that the amplitude equations derived in Wu & Stewart
(1997), as well as the associated properties, are directly applicable.

The authors would like to thank the referees for helpful suggestions.

A. Appendix
The nonlinear, non-equilibrium, viscous critical-layer amplitude equations of Wu

& Stewart (1996) can be written as

dA

dx1

= κaA + iΥp

∫ ∞

0

∫ ∞

0

Kp(ξ, η|Λ) exp
(
−iσ −1α0∆(ξ + η)

)
B(x1 − σ̂dξ )

× B∗(x1 − ξ − σ̂ η)A(x1 − ξ − η) dξ dη

+ iΥa

∫ ∞

0

∫ ∞

0

Ka(ξ, η|Λ)A(x1 − ξ )A(x1 − ξ − η)A∗(x1 − 2ξ − η) dξ dη, (A 1)

dB

dx1

= κbB + iΥb

∫ ∞

0

∫ ∞

0

Kb(ξ, η|Λ) exp
(
−iσ −1α̃0∆(ξ + η)

)
A(x1 − ξ )

× B(x1 − ξ − η)A∗(x1 − νsξ − ν0η) dξ dη

+ iΥc

∫ ∞

0

∫ ∞

0

Kc(ξ, η|Λ) exp(−iσ −1α̃0∆ξ )

× B(x1 − ξ )A(x1 − ξ − η)A∗(x1 − νsξ − η) dξ dη, (A 2)

where Λ is the viscous parameter. The coefficients of the nonlinear terms, Γp and Γa

etc., are complex constants in general, but are real in the long-wavelength limit. For
the Blasius boundary layer of interest here, the viscous parameter Λ = sσ −3. If the
magnitude of the planar wave is scaled as in § 3 (i.e. ε = σ 17/2), and that of the oblique
modes δ = σ 7, then Γp and Γa etc. are given by those in (5.14)–(5.16) divided by σ 6,

that is Γp = σ −6Γ̃p etc. Equations (A 1)–(A 2) can be derived if the formally small term
∂/∂x1 is retained at the leading order in the critical-layer equations. Alternatively, they
may be obtained by retaining the formally small linear-growth terms in (5.11)–(5.12),
and then performing appropriate rescaling.
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In the following, we show that the various evolution equations derived in §§ 3–5,
which govern the three weakly nonlinear stages of the phase-locked T-S waves, are all
contained within (A 1)–(A 2) in the sense that the former equations may be derived
as the limiting forms of the latter. In the rest of this Appendix up to the second last
paragraph, we assume that A 
 O(1) such that the second nonlinear term in (A 1)
as well as the nonlinear terms in (A 2) can be neglected and that B = B0 exp(κbx1).

The amplitude equation, (3.26), in the first nonlinear stage can immediately be
obtained by substituting

ξ = σ ξ̄ , η = σ η̄ (A 3)

into (A 1) and then taking the limit σ → 0.
In the case of zero phase-speed mismatching (i.e. ∆ =0), we may introduce (cf.

Goldstein 1994)

x1 = x̂ + κ−1
b log σ −1/4, A = Â(x̂) exp

(
iΘ̂/σ 1/2

)
. (A 4)

with x̂ being of order one. Inserting (A 4) and (A 3) along with B = exp(κbx1) =
σ −1/4B̂(x̂) into (A 1) yields{

Â′ + iσ −1/2Θ̂ ′Â
}

exp
(
iΘ̂/σ 1/2

)
= κaÂ exp

(
iΘ̂/σ 1/2

)
+ σ −1/2iΥ̃p|B̂|2N̂(x̂), (A 5)

where

N̂(x̂)=

∫ ∞

0

∫ ∞

0

Kp(ξ, η|s) exp(−σκb[(1 + σ̂d)ξ + σ̂ η] + σ −1/2Θ̂(x̂ − σ (ξ + η)))

× Â(x̂ − σ (ξ + η)) dξ dη

→
{
I 2
2 (0)Â − (2iI2(0)I3(0)Θ̂ ′)σ 1/2Â + O(σ )

}
exp(iΘ̂/σ 1/2); (A 6)

here in the last step, we approximated the integrand by its Taylor series for small σ

and then took the limit σ → 0. Equating the terms at O(σ −1/2) and O(1) in (A 5), we
obtain the equations

Θ̂ ′ = iΥ̃pI 2
2 (0)|B̂|2, Â′ = κaÂ + 2Υ̃pI2(0)I3(0)Θ̂ ′|B̂|2Â.

These are identical to (3.43) and (3.57) with the identical coefficients.
In the non-equilibrium WKBJ stage, we introduce

x1 = x† + κ−1
b log σ −1/2, A = Â(x†) exp(Φ(x†)/σ ). (A 7)

Substitution of these and (A 3) into (A 1) gives

{Â′ + σ −1Φ ′Â} exp(Φ/σ ) = κaÂ exp(Φ/σ ) + σ −1iΥ̃ exp(2κbx
†)Np (A 8)

where

Np =

∫ ∞

0

∫ ∞

0

Kp(ξ, η|s) exp(−σκb[(1 + σ̂d)ξ + σ̂ η]−iα0∆(ξ+η)+σ −1Φ(x†−σ (ξ+η)))

× Ā(x† − σ (ξ + η)) dξ dη.

A Taylor expansion of the integrand shows that

Np → Ā

{∫ ∞

0

ξ 2 exp(−sσ̂dξ
3 − iα0∆ξ − Φ ′(x†)ξ ) dξ

}2

exp(Φ/σ )

+ σ eΦ/σ

∫ ∞

0

∫ ∞

0

Kp(ξ, η|s) exp(−(ξ + η)(iα0∆ + Φ ′))

×
{

1
2
(ξ + η)2Φ ′′Ā − κb[(1 + σ̂d)ξ + σ̂ η]Ā − (ξ + η)Ā′} dξ dη. (A 9)
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The balance in (A 8) at O(σ −1) gives

Φ ′(x†) = iΥ̃p exp(2κbx
†)

{∫ ∞

0

ξ 2 exp(−sσ̂dξ
3 − iα0∆ξ − Φ ′(x†)ξ ) dξ

}2

, (A 10)

which is equivalent to (4.17). The balance at O(1) gives the equation for Ā, which,
after using the relations obtained by differentiating (A 10), can be simplified to

Ā′ =
1

2

{
κaΦ

′′

κbΦ ′ − Φ ′′

Φ ′

(
Φ ′

Φ ′′

)′}
Ā. (A 11)

The solution for Ā is then

Ā = ā0(Φ
′)(κa−κb)/(2κb)(Φ ′′)1/2, (A 12)

with ā0 being a constant. This is the equation that would be obtained if the analysis
in § 4 is carried to higher orders.

In the final weakly nonlinear regime, the disturbance is described by the faster
variable x̃, which is related to x1 by

x1 = σ x̃ + x†
s + κ−1

b log σ −1/2.

Substituting this and (A 3) along with B = σ −1/2B̃ into (A 1)–(A 2), we obtain (5.11)–
(5.12).

The result of this Appendix therefore shows that the amplitude equations (A 1)–
(A 2) provide a uniformly valid description of the evolution of the phase-locked T–S
waves throughout the entire linear and weakly nonlinear regimes.
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